Calculating Prediction Intervals
pima.Rd
This function can estimate prediction intervals (PIs) as follows: A parametric bootstrap PI based on confidence distribution (Nagashima et al., 2018). A parametric bootstrap confidence interval is also calculated based on the same sampling method for bootstrap PI. The Higgins–Thompson–Spiegelhalter (2009) prediction interval. The Partlett–Riley (2017) prediction intervals.
Usage
pima(
y,
se,
v = NULL,
alpha = 0.05,
method = c("boot", "HTS", "HK", "SJ", "KR", "CL", "APX", "WL"),
theta0 = 0,
side = c("lt", "gt"),
B = 25000,
parallel = FALSE,
seed = NULL,
maxit1 = 1e+05,
eps = 10^(-10),
lower = 0,
upper = 1000,
maxit2 = 1000,
tol = .Machine$double.eps^0.25,
rnd = NULL,
maxiter = 100
)
Arguments
- y
the effect size estimates vector
- se
the within studies standard error estimates vector
- v
the within studies variance estimates vector
- alpha
the alpha level of the prediction interval
- method
the calculation method for the pretiction interval (default = "boot").
boot
: A parametric bootstrap prediction interval (Nagashima et al., 2018).HTS
: the Higgins–Thompson–Spiegelhalter (2009) prediction interval / (the DerSimonian & Laird estimator for \(\tau^2\) with an approximate variance estimator for the average effect, \((1/\sum{\hat{w}_i})^{-1}\), \(df=K-2\)).HK
: Partlett–Riley (2017) prediction interval (the REML estimator for \(\tau^2\) with the Hartung (1999)'s variance estimator [the Hartung and Knapp (2001)'s estimator] for the average effect, \(df=K-2\)).SJ
: Partlett–Riley (2017) prediction interval / (the REML estimator for \(\tau^2\) with the Sidik and Jonkman (2006)'s bias coreccted variance estimator for the average effect, \(df=K-2\)).KR
: Partlett–Riley (2017) prediction interval / (the REML estimator for \(\tau^2\) with the Kenward and Roger (1997)'s approach for the average effect, \(df=\nu-1\)).APX
: Partlett–Riley (2017) prediction interval / (the REML estimator for \(\tau^2\) with an approximate variance estimator for the average effect, \(df=K-2\)). for the average effect, \(df=\nu-1\)).WL
: Wang–Lee (2019) prediction interval / (a method of sample quantiles of ensemble estimates).
- theta0
threshold \(\theta_0\), for the cumulative probability of effect \(\theta_{new}\) less or greater than \(\theta_0\); \(\Pr(\theta_{new} < \theta_0)\) or \(\Pr(\theta_{new} > \theta_0)\).
- side
either the cumulative probability of effect less (default = "lt") or greater ("gt") then \(\theta_0\)
- B
the number of bootstrap samples
- parallel
the number of threads used in parallel computing, or FALSE that means single threading
- seed
set the value of random seed
- maxit1
the maximum number of iteration for the exact distribution function of \(Q\)
- eps
the desired level of accuracy for the exact distribution function of \(Q\)
- lower
the lower limit of random numbers of \(\tau^2\)
- upper
the upper limit of random numbers of \(\tau^2\)
- maxit2
the maximum number of iteration for numerical inversions
- tol
the desired level of accuracy for numerical inversions
- rnd
a vector of random numbers from the exact distribution of \(\tau^2\)
- maxiter
the maximum number of iteration for REML estimation
Value
K
: the number of studies.muhat
: the average treatment effect estimate \(\hat{\mu}\).lci
,uci
: the lower and upper confidence limits \(\hat{\mu}_l\) and \(\hat{\mu}_u\).lpi
,upi
: the lower and upper prediction limits \(\hat{c}_l\) and \(\hat{c}_u\).tau2h
: the estimate for \(\tau^2\).i2h
: the estimate for \(I^2\).nup
: degrees of freedom for the prediction interval.nuc
: degrees of freedom for the confidence interval.vmuhat
: the variance estimate for \(\hat{\mu}\).
Details
The functions bootPI
, pima_boot
,
pima_hts
, htsdl
, pima_htsreml
, htsreml
are deprecated, and integrated to the pima
function.
References
Higgins, J. P. T, Thompson, S. G., Spiegelhalter, D. J. (2009). A re-evaluation of random-effects meta-analysis. J R Stat Soc Ser A Stat Soc. 172(1): 137-159. https://doi.org/10.1111/j.1467-985X.2008.00552.x
Partlett, C, and Riley, R. D. (2017). Random effects meta-analysis: Coverage performance of 95 confidence and prediction intervals following REML estimation. Stat Med. 36(2): 301-317. https://doi.org/10.1002/sim.7140
Nagashima, K., Noma, H., and Furukawa, T. A. (2019). Prediction intervals for random-effects meta-analysis: a confidence distribution approach. Stat Methods Med Res. 28(6): 1689-1702. https://doi.org/10.1177/0962280218773520.
Wang, C-C and Lee, W-C. (2019). A simple method to estimate prediction intervals and predictive distributions. Res Syn Meth. 30(28): 3304-3312. https://doi.org/10.1002/jrsm.1345.
Hartung, J. (1999). An alternative method for meta-analysis. Biom J. 41(8): 901-916. https://doi.org/10.1002/(SICI)1521-4036(199912)41:8<901::AID-BIMJ901>3.0.CO;2-W.
Hartung, J., and Knapp, G. (2001). On tests of the overall treatment effect in meta-analysis with normally distributed responses. Stat Med. 20(12): 1771-1782. https://doi.org/10.1002/sim.791.
Sidik, K., and Jonkman, J. N. (2006). Robust variance estimation for random effects meta-analysis. Comput Stat Data Anal. 50(12): 3681-3701. https://doi.org/10.1016/j.csda.2005.07.019.
Kenward, M. G., and Roger, J. H. (1997). Small sample inference for fixed effects from restricted maximum likelihood. Biometrics. 53(3): 983-997. https://www.ncbi.nlm.nih.gov/pubmed/9333350.
DerSimonian, R., and Laird, N. (1986). Meta-analysis in clinical trials. Control Clin Trials. 7(3): 177-188.
Examples
data(sbp, package = "pimeta")
# Nagashima-Noma-Furukawa prediction interval
# is sufficiently accurate when I^2 >= 10% and K >= 3
pimeta::pima(sbp$y, sbp$sigmak, seed = 3141592, parallel = 4)
#>
#> Prediction & Confidence Intervals for Random-Effects Meta-Analysis
#>
#> A parametric bootstrap prediction and confidence intervals
#> Heterogeneity variance: DerSimonian-Laird
#> Variance for average treatment effect: Hartung (Hartung-Knapp)
#>
#> No. of studies: 10
#>
#> Average treatment effect [95% prediction interval]:
#> -0.3341 [-0.8789, 0.2165]
#> d.f.: 9
#>
#> Average treatment effect [95% confidence interval]:
#> -0.3341 [-0.5673, -0.0985]
#> d.f.: 9
#>
#> Heterogeneity measure
#> tau-squared: 0.0282
#> I-squared: 70.5%
#>
#> Estimated cumulative probability of effect `theta_new`
#> Pr(theta_new < 0): 0.9157
#>
# Higgins-Thompson-Spiegelhalter prediction interval and
# Partlett-Riley prediction intervals
# are accurate when I^2 > 30% and K > 25
pimeta::pima(sbp$y, sbp$sigmak, method = "HTS")
#>
#> Prediction & Confidence Intervals for Random-Effects Meta-Analysis
#>
#> Higgins-Thompson-Spiegelhalter prediction and confidence intervals
#> Heterogeneity variance: DerSimonian-Laird
#> Variance for average treatment effect: approximate
#>
#> No. of studies: 10
#>
#> Average treatment effect [95% prediction interval]:
#> -0.3341 [-0.7598, 0.0917]
#> d.f.: 8
#>
#> Average treatment effect [95% confidence interval]:
#> -0.3341 [-0.5068, -0.1613]
#> d.f.: 9
#>
#> Heterogeneity measure
#> tau-squared: 0.0282
#> I-squared: 70.5%
#>
#> Estimated cumulative probability of effect `theta_new`
#> Pr(theta_new < 0): 0.9460
#>
pimeta::pima(sbp$y, sbp$sigmak, method = "HK")
#>
#> Prediction & Confidence Intervals for Random-Effects Meta-Analysis
#>
#> Partlett-Riley prediction and confidence intervals
#> Heterogeneity variance: REML
#> Variance for average treatment effect: Hartung (Hartung-Knapp)
#>
#> No. of studies: 10
#>
#> Average treatment effect [95% prediction interval]:
#> -0.3287 [-0.9887, 0.3312]
#> d.f.: 8
#>
#> Average treatment effect [95% confidence interval]:
#> -0.3287 [-0.5761, -0.0814]
#> d.f.: 9
#>
#> Heterogeneity measure
#> tau-squared: 0.0700
#> I-squared: 85.5%
#>
#> Estimated cumulative probability of effect `theta_new`
#> Pr(theta_new < 0): 0.8581
#>
pimeta::pima(sbp$y, sbp$sigmak, method = "SJ")
#>
#> Prediction & Confidence Intervals for Random-Effects Meta-Analysis
#>
#> Partlett-Riley prediction and confidence intervals
#> Heterogeneity variance: REML
#> Variance for average treatment effect: bias corrected Sidik-Jonkman
#>
#> No. of studies: 10
#>
#> Average treatment effect [95% prediction interval]:
#> -0.3287 [-0.9835, 0.3261]
#> d.f.: 8
#>
#> Average treatment effect [95% confidence interval]:
#> -0.3287 [-0.5625, -0.0950]
#> d.f.: 9
#>
#> Heterogeneity measure
#> tau-squared: 0.0700
#> I-squared: 85.5%
#>
#> Estimated cumulative probability of effect `theta_new`
#> Pr(theta_new < 0): 0.8598
#>
pimeta::pima(sbp$y, sbp$sigmak, method = "KR")
#>
#> Prediction & Confidence Intervals for Random-Effects Meta-Analysis
#>
#> Partlett-Riley prediction and confidence intervals
#> Heterogeneity variance: REML
#> Variance for average treatment effect: Kenward-Roger
#>
#> No. of studies: 10
#>
#> Average treatment effect [95% prediction interval]:
#> -0.3287 [-1.0280, 0.3706]
#> d.f.: 5.9508
#>
#> Average treatment effect [95% confidence interval]:
#> -0.3287 [-0.5815, -0.0759]
#> d.f.: 6.9508
#>
#> Heterogeneity measure
#> tau-squared: 0.0700
#> I-squared: 85.5%
#>
#> Estimated cumulative probability of effect `theta_new`
#> Pr(theta_new < 0): 0.8534
#>
pimeta::pima(sbp$y, sbp$sigmak, method = "APX")
#>
#> Prediction & Confidence Intervals for Random-Effects Meta-Analysis
#>
#> Partlett-Riley prediction and confidence intervals
#> Heterogeneity variance: REML
#> Variance for average treatment effect: approximate
#>
#> No. of studies: 10
#>
#> Average treatment effect [95% prediction interval]:
#> -0.3287 [-0.9843, 0.3268]
#> d.f.: 8
#>
#> Average treatment effect [95% confidence interval]:
#> -0.3287 [-0.5646, -0.0929]
#> d.f.: 9
#>
#> Heterogeneity measure
#> tau-squared: 0.0700
#> I-squared: 85.5%
#>
#> Estimated cumulative probability of effect `theta_new`
#> Pr(theta_new < 0): 0.8596
#>