Converting binary data
convert_bin.Rd
Converting binary outcome data to the effect size estimates and the within studies standard errors vector
Usage
convert_bin(m1, n1, m2, n2, type = c("logOR", "logRR", "RD"))
Arguments
- m1
A vector of the number of successes in experimental group
- n1
A vector of the number of patients in experimental group
- m2
A vector of the number of successes in contorol group
- n2
A vector of the number of patients in contorol group
- type
the outcome measure for binary outcome data (default = "logOR").
logOR
: logarithmic odds ratio, which is defined by \(=\log \frac{(m1+0.5)(n2-m2+0.5)}{(n1-m1+0.5)(m2+0.5)}\).logRR
: logarithmic relative risk, which is defined by \(=\log \frac{(m1+0.5)(n2+0.5)}{(n1+0.5)(m2+0.5)}\).RD
: risk difference, which is defined by \(=\frac{m1}{n1}-\frac{m2}{n2}\).
Value
A data.frame
of study data.
y
: A numeric vector of the effect size estimates.se
: A numeric vector of the within studies standard errors.
Details
This function implements methods for logarithmic odds ratio, logarithmic relative risk, and risk difference described in Hartung & Knapp (2001).
References
Hartung, J., and Knapp, G. (2001). A refined method for the meta-analysis of controlled clinical trials with binary outcome. Stat Med. 20(24): 3875-3889. https://doi.org/10.1002/sim.1009
Examples
require("flexmeta")
#> Loading required package: flexmeta
#> Warning: there is no package called 'flexmeta'
m1 <- c(15,12,29,42,14,44,14,29,10,17,38,19,21)
n1 <- c(16,16,34,56,22,54,17,58,14,26,44,29,38)
m2 <- c( 9, 1,18,31, 6,17, 7,23, 3, 6,12,22,19)
n2 <- c(16,16,34,56,22,55,15,58,15,27,45,30,38)
dat <- convert_bin(m1, n1, m2, n2, type = "logOR")
print(dat)
#> y se
#> 1 2.0989861 0.9847737
#> 2 3.3570262 1.0165653
#> 3 1.5652318 0.5747840
#> 4 0.8640463 0.4042977
#> 5 1.4656407 0.6332968
#> 6 2.2325713 0.4481371
#> 7 1.5465488 0.7782417
#> 8 0.4125323 0.3721812
#> 9 2.1202635 0.8265438
#> 10 1.8071598 0.6022988
#> 11 2.7646729 0.5382109
#> 12 -0.3544099 0.5555283
#> 13 0.2058521 0.4541130